VARIABLE ACCRETION IN THE EMBEDDED PHASE OF STAR FORMATION
نویسندگان
چکیده
منابع مشابه
Variable Accretion in the Embedded Phase of Stellar Evolution
Motivated by the recent detection of a large number of embedded young stellar objects (YSOs) with mass accretion rates that are inconsistent with the predictions of the standard model of inside-out collapse (Shu 1977), we perform a series on numerical hydrodynamic simulations of the gravitational collapse of molecular cloud cores with various initial masses, rotation rates, and sizes. We focus ...
متن کاملDissipation of Magnetic Flux in Primordial Star Formation: From Run-away Phase to Mass Accretion Phase
We investigate the dissipation of magnetic flux in primordial star-forming clouds throughout their collapse including the run-away collapse phase as well as the accretion phase. We solve the energy equation and the non-equilibrium chemical reactions in the collapsing gas, in order to obtain the radial distribution of the ionized fraction during the collapse. As a result, we find the ionized fra...
متن کاملEmbedded Star Formation in the Eagle Nebula
M16=NGC 6611, the Eagle Nebula, is a well studied region of star formation and the source of a widely recognized Hubble Space Telescope (HST) image. High spatial resolution infrared observations with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on HST reveal the detailed morphology of two embedded star formation regions that are heavily obscured at optical wavelengths. It is ...
متن کاملCritical Accretion Rate for Triggered Star Formation
We have reexamined the similarity solution for a self-gravitating isothermal gas sphere and examined implication to star formation in a turbulent cloud. When parameters are adequately chosen, the similarity solution expresses an accreting isothermal gas sphere bounded by a spherical shock wave. The mass and radius of the sphere increases in proportion to the time, while the central density decr...
متن کاملThe formation of massive star systems by accretion.
Massive stars produce so much light that the radiation pressure they exert on the gas and dust around them is stronger than their gravitational attraction, a condition that has long been expected to prevent them from growing by accretion. We present three-dimensional radiation-hydrodynamic simulations of the collapse of a massive prestellar core and find that radiation pressure does not halt ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2009
ISSN: 0004-637X,1538-4357
DOI: 10.1088/0004-637x/704/1/715